VS Battles Wiki

We have moved to a new external forum hosted at https://vsbattles.com

For information regarding the procedure that needs to be exactly followed to register there, please click here.

READ MORE

VS Battles Wiki
VS Battles Wiki
(Created page with "I got ut based on this: https://en.m.wikipedia.org/wiki/Black_hole#Physical_properties: The simplest static black holes have mass but neither electric charge nor angular mom...")
 
No edit summary
 
Line 1: Line 1:
I got ut based on this: https://en.m.wikipedia.org/wiki/Black_hole#Physical_properties:
+
I got it based on this: https://en.m.wikipedia.org/wiki/Black_hole#Physical_properties:
   
 
The simplest static black holes have mass but neither electric charge nor angular momentum. These black holes are often referred to as Schwarzschild black holes after Karl Schwarzschild who discovered this solution in 1916.[12] According to Birkhoff's theorem, it is the only vacuum solution that is spherically symmetric.[45] This means that there is no observable difference between the gravitational field of such a black hole and that of any other spherical object of the same mass. The popular notion of a black hole "sucking in everything" in its surroundings is therefore only correct near a black hole's horizon; far away, the external gravitational field is identical to that of any other body of the same mass.
 
The simplest static black holes have mass but neither electric charge nor angular momentum. These black holes are often referred to as Schwarzschild black holes after Karl Schwarzschild who discovered this solution in 1916.[12] According to Birkhoff's theorem, it is the only vacuum solution that is spherically symmetric.[45] This means that there is no observable difference between the gravitational field of such a black hole and that of any other spherical object of the same mass. The popular notion of a black hole "sucking in everything" in its surroundings is therefore only correct near a black hole's horizon; far away, the external gravitational field is identical to that of any other body of the same mass.

Latest revision as of 14:28, 31 December 2016

I got it based on this: https://en.m.wikipedia.org/wiki/Black_hole#Physical_properties:

The simplest static black holes have mass but neither electric charge nor angular momentum. These black holes are often referred to as Schwarzschild black holes after Karl Schwarzschild who discovered this solution in 1916.[12] According to Birkhoff's theorem, it is the only vacuum solution that is spherically symmetric.[45] This means that there is no observable difference between the gravitational field of such a black hole and that of any other spherical object of the same mass. The popular notion of a black hole "sucking in everything" in its surroundings is therefore only correct near a black hole's horizon; far away, the external gravitational field is identical to that of any other body of the same mass.

Solutions describing more general black holes also exist. Non-rotating charged black holes are described by the Reissner–Nordström metric, while the Kerr metric describes a non-charged rotating black hole. The most general stationary black hole solution known is the Kerr–Newman metric, which describes a black hole with both charge and angular momentum.[47]

While the mass of a black hole can take any positive value, the charge and angular momentum are constrained by the mass. In Planck units, the total electric charge Q and the total angular momentum J are expected to satisfy for a black hole of mass M. Black holes satisfying this inequality are called extremal. Solutions of Einstein's equations that violate this inequality exist, but they do not possess an event horizon. These solutions have so-called naked singularities that can be observed from the outside, and hence are deemed unphysical. The cosmic censorship hypothesis rules out the formation of such singularities, when they are created through the gravitational collapse of realistic matter.This is supported by numerical simulations.